2021. augusztus 27., péntek

Programozó cégek Kiskunfélegyháza közelében (mit programozzak?)

Arra gondoltam, hogy egy privát offline HTML kezdőlapra összegyűjtöm az általam gyakran (vagy potenciálisan) használt linkek mellett azoknak a cégeknek a honlapjaira vezető linkeket is, amelyek Kiskunfélegyháza közelében (főleg Kecskeméten vagy Szegeden) webfejlesztéssel vagy szoftverfejlesztéssel is foglalkoznak. Ennek többféle értelmét is látom: először is, kíváncsi vagyok arra, hogy milyen üzleti ötletekkel keresik a kenyerüket az informatikai vállalkozások (esetleg én is foglalkozhatnék-e hasonlókkal). Úgy látom, hogy a kisebb cégek és a számítástechnikai üzletek általában honlapokat fejlesztenek, esetleg mobil alkalmazásokat vagy vállalatirányítási rendszereket készítenek. De ezeken a területeken nekem nincs kedvem vállalkozni (nem látok bennük fényes jövőt a konkurenciát tekintetbe véve), inkább egy biztos állást szeretnék. A nagyobb cégeknél már többször előfordulnak érdekes és egyedi üzleti ötletek, de ezeket inkább csak nagyobb cégek tudják megvalósítani... tehát, az üzleti ötletek terén egyenlőre nem lettem sokkal okosabb (bár még lehet, hogy vizsgálgatom majd az összegyűjtött cégek honlapjait), valószínűleg marad az, amit már egy korábbi blogbejegyzésemben említettem...

Másodszor, a potenciális munkáltatók honlapjaira mutató linkeknek az összegyűjtése később segíthet nekem az álláskeresésben (2022-ben tervezek majd komolyan állást keresni). Azt tapasztaltam ugyanis, hogy nem minden cég hirdet mindig teljes erőből állásokat, tehát nem mindig elérhető webes kereséssel vagy az állásportálokról (csak a saját honlapján hirdeti az állást, amit nem talál meg a kereső), ezért lehetséges, hogy olyan cégeket, amelyeket korábban láttam, később már nem találok meg, mert nem emlékszem a nevükre. Most is úgy érzem, hogy van néhány cég, amelyeknél korábban állásokat pályáztam meg, de (még) nem szerepelnek a privát HTML kezdőlapomon. Egyszerűen elfelejtettem, hogy melyek voltak ezek a cégek. Tehát, úgy gondolom, hogy sokkal több programozó cég lehet (legalábbis Szegeden), mint amennyiről én tudok. Tehát, az is lehet, hogy a programozó ismerőseim körében meg fogom kérdezni, hogy ki tudják-e egészíteni az általam összegyűjtött cégek listáját, ezáltal pedig növelhetem annak esélyeit, hogy 2022-ben felvegyenek valahova. Egyébként most úgy látom, hogy Szegeden sokkal több programozó cég van, mint Kiskunfélegyházán és Kecskeméten együttvéve. (Budapesten pedig még sokkal több, mint az előbbi három városban együttvéve.) Tehát, ha programozóként szeretnék dolgozni, valószínűleg Szegeden kellene elképzelnem a jövőmet, szóval a jövő tervezésében is segíthet ez a kezdőlap. (Bár az is lehet, hogy találok majd Kiskunfélegyházán valamilyen állást, amihez kelleni fog az angol és/vagy német nyelvtudás. Ez mondjuk kényelmesebb lenne, mert nem kellene albérletbe mennem.)

A programozó cégek álláshirdetéseihez vezető linkekkel több fogalmam lesz arról is, hogy milyen programozási technológiákat érdemes a leginkább elsajátítanom. Esetleg ha megtetszik egy cég, rákészülhetek egy általa meghirdetett állásra (illetve, ha már úgyis az "Audio Visualizer" ötletemet tervezem megvalósítani, kigyűjtöm azokat a cégeket, amelyek hasonló technológiákat alkalmaznak, mint én, így tervezve a jövőt). Esetleg kommunikálhatok is a cégekkel, hogy engedjék meg, hogy betanuljak a munkába (önkéntesen), hogy később nagyobb eséllyel felvegyenek. (Pl. korábban talán lett volna egy lehetőség, hogy betanuljak a Unity-be játékfejlesztéshez.) De támadt egy ennél is jobb ötletem! Mi lenne, ha elkezdeném ajánlani a Free Software Foundation Europe által szervezett "Public Money, Public Code" nevű kampányt a magyar politikusoknak és "városatyáknak"? Ezzel etikus dolgot cselekednék, és egyúttal talán könnyebben kaphatnék egy jó állást is egy olyan cégnél, amelyik elvégzi a "Public Money, Public Code" kampány által meghatározott feladatot. Egy kis üzletkötés is szóba jöhet, és ehhez is érdemes lehet látni azokat a programozó cégeket, amelyek a munkát el tudják végezni. Egyébként szerintem a közszférában a Linuxot kellene használni (de legalábbis támogatni), nem pedig a Windows-t vagy az Apple-t. Viszont az is érdekes, hogy korábban olvastam egy hírt, miszerint az open-source technológiák használata akár negatív hatással is lehet a számítógépes biztonságra, mivel olyan külső, open-source (nyílt forráskódú) komponensekből (függvénykönyvtárakból) építkezik, amelyeket nem frissítenek (a frissítés ugyanis kompatibilitási problémákat okozhatna), ezért maradhat bennük (a külső komponensekben) valamilyen biztonsági rés, amit a hackerek megismerhetnek és kihasználhatnak. Én viszont egyébként sem szeretek túl sok külső komponenst felhasználni a programozás során, ezért lehet, hogy jó helyem lenne egy olyan csapatban, ami a "Public Money, Public Code" nevű kampány által definiált célokon dolgozik (és hosszú távon is pozitív tapasztalatokat szeretne ébreszteni a kampányt elfogadó döntéshozókban). Ennyit a programozó cégek honlapjaira mutató linkek kigyűjtésének értelméről.

Egyébként nehéz kérdés marad, hogy jól használom-e ki a szabadidőmet a siker érdekében. Mostanában főleg németül tanulok (főleg olyan témákban, amelyek egyébként is érdekelnek), naponta játszok egy sakkpartit (többhöz általában nincs kedvem), néha frissítem ezt a blogot és ennyi (bár a nézettségét látva lehet, hogy ez is ritkább lesz). Ezeken kívül tervezem gyakorolni a programozást (amint az előbb leírtam), esetleg írok is valamit (pl. könyvet, vagy valamit egy drámapályázatra), talán a YouTuba-ra is rakok majd valamit (pl. zenét, a leendő Audio Visualizer kimenetét, vagy vlog-ot). Most még nem látom, hogy ez a 6 tevékenység közül melyik lesz sikeres, és melyik nem, és van-e még valamilyen tevékenység, ami javíthatna a helyzetemen. Egyébként amihez kedvem van, az a tanulás, a filozofálás és a tudományos kutatás (inkább a természettudományok és a társadalomtudományok területén, mint a technológiában)... de PhD nélkül nem lehetek professzionális kutató, a PhD pedig pénzbe is kerül. Bár nem is szívesen publikálnék olyan folyóiratokban, amelyekben a kutatók szoktak (pl. jogi okok miatt)... inkább saját könyvet írnék. Ez is lehet egy hobbi is, de úgy érzem, rövid távon inkább a nyelvtanulásra és a programozásra kell koncentrálnom, hogy legyen majd 2022-től egy jobb állásom.

Az Audio Visualizer (GitHub referenciának) ötletemen és a programozó cégektől elleshető (vagy éppen az általuk megkövetelt) ötleteken kívül még olyan programozási ötletek is szóba jöhetnek, amelyek valamilyen programozási versenyen való részvételről szólnak. Nemrég találkoztam egy ilyennel: js13kgames.com, meg még korábban hallottam a Google Kickstartról is. Jó kérdés, hogy érdemes-e ezekkel töltenem az időt. Talán mindegy is, csak csináljak valamit.

2021. augusztus 10., kedd

Szellemi tulajdonjog mint "game-changer"

A történelemben nem mindig védte a találmányokat szabadalom, és nem mindig védte a publikációkat a másolást tiltó szerzői jog (copyright). A szabadalmak, a szerzői jogok és hasonlók (egy szóval a szellemi tulajdonjogok) game-changer-nek (a játékszabályokat megváltoztatónak) bizonyultak a világban. De ugyanezt a lépést akár visszafelé is meg lehetne lépni, és akkor ez ugyancsak game-changer lenne! Mikor lehet ez indokolt? Például a következő esetekben:

  • Ha el akarjuk hárítani a környezetbarát (vagy egyéb tekintetben etikusnak mondható) találmányok sokszorosítása elől a jogi akadályokat. Például, a leghatékonyabb napelemeket vagy szélturbinákat szeretnénk gyártani lokálisan. Persze ha a szabadalmakat felülíró törvényt hoznának, nem ártana cserébe egy kis kompenzáció a feltalálóknak, hogy ezután is motiváltak legyenek hasznos találmányok létrehozására.
  • A szabadalmak felülírása a hírhedt szoftver-szabadalmak esetén is indokolt lehet. Ezek olyan szabadalmak, amelyek mögött valójában nem áll igazi kreatív munka, csak jogilag korlátozzák a szabadalmakkal nem rendelkező szoftverfejlesztők lehetőségeit ott, ahol a szabadalommal védett megoldás használata majdnem szükségszerű. Ilyen esetekben, a szabadalom felülírása esetén nem kellene kompenzációt biztosítani a szabadalom tulajdonosának.
  • Olyan országok, amelyeknek már úgyis rosszak a kapcsolatai a többi országgal (pl. Észak-Korea), vagy amelyek a "failed state" (kb. kormány nélkül maradt) kategóriába tartoznak (pl. Szomália), talán javíthatnának a gazdasági helyzetükön úgy, hogy felhasználják a más országokból szerzett szabadalmakat és szerzői jogokkal védett műveket. Persze ebben az esetben arra is lehetne számítani, hogy talán még kevesebb ország kereskedne velük, mint korábban, de előfordulhatna akár ennek az ellenkezője is.
  • A tudomány történetében fontos publikációkat (pl. Gödel nemteljességi tételeinek bizonyítását) valószínűleg érdemes lenne közkinccsé tenni, hogy az egyetemeken oktatott tananyag útjába ne álljon jogi buktató. Hasonlóképpen, az iskolában oktatott egyéb fontos műveket, pl. irodalmi alkotásokat is valószínűleg jó lenne mihamarabb közkinccsé tenni.
  • Esetleg az is indokolhatná a szellemi tulajdonjogok eltörlését (pl. valamilyen "kalóz-párt" által), hogy elméletileg nem lehetséges tökéletes törvényeket hozni a szellemi tulajdonjogok védelmére. Erről bővebben...

Jó kérdés, hogy lehet-e tökéletesebb törvényeket alkotni a szellemi tulajdonjogok védelmére, mint amelyek most uralkodnak... Például olyan törvényeket, amelyek matematikai pontossággal definiálnák, hogy mi számít szerzői jog sértésnek, és mi nem. Például, szerzői jog sértés-e egy (maximum 100 betűs) mondat idézése? Ha igen, akkor szerzői jogot sérthetünk akár véletlenül is... Ha nem, akkor viszont idézhetnénk a teljes publikációt (100 betűs) mondatokra osztva. Sok könyvnek az elejébe beleírják, hogy a publikáció semmilyen részét nem lehet reprodukálni, de jó kérdés, hogy mi számít a publikáció részének: akár egy olyan mondat is, ami máshol is gyakran előfordul? Akár egy szó vagy szókapcsolat is, ami addig más publikációban még nem jelent meg? Ezt nem tehetik. (Sajnos a betűtípusok többsége is szerzői joggal védett, de érdekes módon a velük készített dokumentumok elvileg lehetnek közkincsek is. Ez is ellentmond a szerzői jog sértés matematikai pontosságú definíciójának, pl. vegyük a közkincs dokumentumot, és rekonstruáljuk belőle a betűtípust... így a betűtípus közkincs lett-e?) Ha pedig a szerzői jog sértés matematikai pontossággal nem definiálható, akkor a bíróságokon sem mindig hozhatnak jó döntéseket ebben a kérdésben. A mesterséges intelligencia megjelenése még inkább sürgeti azt, hogy felülvizsgáljuk a szellemi tulajdonjogról szóló törvényeket, és megpróbáljuk azokat úgy megalkotni, hogy matematikai pontossággal eldönthető legyen, hogy a gép szellemi tulajdonjogot sért-e vagy nem. Lehet, hogy ez nem fog sikerülni, és rá kell jönnünk, hogy maga a szellemi tulajdonjog nem tartozik az emberiség legjobb ötletei közé.

Arra is gondoltam, hogy a Bibliában leírt "jó és rossz tudásának a fája", ami a "bűnbeesést" okozhatta (a Biblia szerint), akár jelentheti azt is, hogy "szerzői joggal védett tudás fája"... bár talán mégis azt jelentheti inkább, hogy "nem bizonyított tudás fája", vagy "a jóra és rosszra való képesség fája", illetve a "jó és rossz gondolatok fája".

2021. augusztus 6., péntek

Matematikai finitizmus és az önmagára való hivatkozás kizárása

A korábbi blogbejegyzésemmel kapcsolatban azon gondolkodtam, hogy megpróbáljak-e könyvet írni a matematikában (talán) előforduló tévedésekről... főleg két témában tudnám megtámadni a matematika 20. századi kultúráját: az egyik az önmagára való hivatkozás, a másik pedig a végtelen nagyságú matematikai objektumok, különösen a végtelen nagyságú képletek és a végtelen gráfok (a végtelen halmazokhoz már annyira hozzászoktam, hogy furcsább lenne elvetni azokat, mint használni). A következőre jutottam:

1. Az önmagára való hivatkozás valóban hibát jelent a matematikában. Ha megnézzük pl. a fraktálokat, beláthatjuk, hogy ezek leírhatók önmagára való hivatkozás nélkül is. A korábbi blogbejegyzésben említett "Diagonal lemma" vagy "Fixed Point Theorem" sem jelent igazából önmagára való hivatkozást, hiszen itt egy szám jelenthet képletet és paramétert is, és a képlet hivatkozik a paraméterre, nem a szám a számra, tehát szemantikus értelemben nincs szó önmagára való hivatkozásról, maximum a szintaktika tűnik úgy (ha jól emlékszem a korábbi gondolataimra). De nem is ezek a példák miatt vetném el az önmagára való hivatkozást, hanem azért, mert valóban "nincs értelmezve" a fejemben. Egy állítás olyan, mint valaminek a definíciója: ha létezik a definiált objektum, az olyan, mintha az állítás igaz lenne, ha nem létezik, az olyan, mintha az állítás hamis lenne. Azt pedig már ismerjük a matematikából, hogy a definíciók, lemmák és tételek (szerk.: és axiómák) szépen fel vannak építve egymásra, és nincs közöttük önmagára való hivatkozás, sem pedig később definiált dologra való hivatkozás. Ilyennek kell tekintenünk az állítások felépítését is. Sem a definíció, sem más állítás nem hivatkozhat önmagára, mert akkor nem lenne értelmezve. Ahogyan nem fogadjuk el a nullával való osztást (mert "nincs értelmezve"), nem szabad elfogadnunk az önmagára való hivatkozást sem. Még akkor sem, ha egyébként nem merül fel a használata során semmi szembetűnő hiba. Nézzünk erre egy-egy példát!

y=(3x)/(7x)

Az y változóban leírt törtet egyszerűsíthetnénk, így y=3/7 jönne ki eredményül (egyébként elképzelhető, hogy némelyik matematikai szoftver azonnal egyszerűsítene is). De mi van akkor, ha x=0? Ekkor valójában y=0/0, ez pedig nincs értelmezve! Úgy gondolom, ezzel a példával teljesen analóg a következő (szerintem közismert) példa: Egy papírra 5 állítás van írva, ezek a következők:

  1. Ezen öt állítás közül pontosan egy hamis.
  2. Ezen öt állítás közül pontosan kettő hamis.
  3. Ezen öt állítás közül pontosan három hamis.
  4. Ezen öt állítás közül pontosan négy hamis.
  5. Ezen öt állítás közül pontosan öt hamis.

Az a kérdés, hogy melyik igaz, melyik hamis. Úgy emlékszem, a "hivatalos" megoldás szerint a negyedik állítás igaz (arról, hogy négy hamis), a többi pedig hamis. De ha jobban belegondolunk, itt is önmagára való hivatkozásról van szó! Mindegyik állítás hivatkozik önmagára és a többi négyre is. Tehát, valójában az kellene, hogy legyen a megoldás, hogy ezen öt állítás nincs értelmezve, tehát egyik sem igaz, és nem is hamis. Az önmagára való hivatkozásokon kívül persze ki kell zárnunk az egymásra való hivatkozást is, mint a következő példában:

  1. A második állítás hamis.
  2. Az első állítás hamis.

Ennek két "megoldása" lenne, vagy az első állítás igaz (és a második hamis), vagy pedig a második állítás igaz (és az első hamis). (Ha viszont a második állítás az lenne, hogy "Az első állítás igaz", akkor nem lenne "megoldás".) De mivel ezek egymásra hivatkoznak, nincsenek értelmezve! (Vagy talán egy külső, harmadik állítás döntené el, hogy valójában melyik állítás az igaz? Szerintem ennek nincs értelme.) Egyszerűen ki kellene mondani, hogy az állításokat úgy építhetjük fel, mint ahogyan a definíciók, lemmák és tételek (szerk.: és axiómák) egymásra épülnek a matematikában. Önmagára való hivatkozás és egymásra való hivatkozás kizárva. Nem tudom, hogy más matematikusok mennyire vannak hasonló véleményen, mint én, de afelé hajlok, hogy ha írnék is egy könyvet a témában, az nem sokkal lenne sikeresebb, mint ez a blogbejegyzés... ennyit tudtam írni a témáról dióhéjban. Még annyit, hogy úgy tűnik, hogy sok matematikai paradoxont fel lehetne oldani az önmagára való hivatkozás kizárásával. Pl. Russel paradoxona azt mondja, hogy:

  1. Legyen S azon halmazok halmaza, amelyek nem elemei önmaguknak.
  2. Ekkor, ha S nem eleme önmagának, akkor S a definíció szerint eleme önmagának.
  3. Ha S eleme önmagának, akkor S a definíció szerint nem eleme önmagának.

Ezt a paradoxont úgy lehetne feloldani a fentebb leírtak alapján, hogy az "x nem eleme önmagának" önmagára való hivatkozást jelent, még akkor is, ha automatikusan igaznak látszik. Tehát, mint olyan, nincs értelmezve.

2. A végtelen nagyságú matematikai objektumok nem feltétlenül jelentenek hibát a matematikában. A korábbi blogbejegyzésemben azt gondoltam, hogy ha nincs olyan szám, hogy "végtelen" (tehát a végtelen csak határértéket vagy divergenciát jelenthet, de nem számot), ez azt jelenti, hogy nincs olyan képlet sem, amely végtelen nagyságú, mivel a képletek tagjainak száma (valamint a képletek kiértékelése is) egy szám kell, hogy legyen (legalábbis, ha nincs benne 0-val való osztás vagy hasonló). Azonban amikor a könyvíráson gondolkodtam erről a témáról, elbizonytalanodtam a kérdésben. Meglehet ugyanis, hogy "bevezetjük" a végtelen nagyságú képletek fogalmát (amelyeknek akár végtelen tagja is lehet), ettől kezdve tehát létezhetnek végtelen nagyságú képletek... ahhoz hasonlóan, ahogyan korábban bevezettük a negatív számokat vagy a komplex számokat. A végtelen nagyságú képletek kiértékelése esetén (pl. határérték-számítással) elképzelhető, hogy az eredmény nem egy szám lesz, hanem a végtelen... tehát a végtelen nagyságú képletek bevezetésével egyidejűleg még be kellene vezetni a végtelent jelentő számértékeket is, pl. a hyperreal nevű konstrukciókat... de ha pl. "omega" jelenti a végtelent, jó kérdés, hogy hogyan különböztetjük meg "omega"-t és "omega"+1-et? Melyiket írhatjuk le a végtelen sok tagú képlet kiértékelésének eredményeképpen? Ezen még lehet gondolkodni, de valószínűleg az "omega" nagyság elérése után "elhanyagolhatóak" a véges számok (omega=omega+1), ellentétben a WikiPedia-ban látott képpel.

A fentiek után a végtelen nagyságú matematikai objektumokban jelenleg nem látok nyilvánvaló hibát... másrészt a halmazelméletben nagyon gyakran dolgozunk végtelen nagyságú halmazokkal, és ezek eléggé intuitívak ahhoz, hogy inkább ezeket preferáljuk egy olyan matematikai kultúra helyett, amiben nem lennének elfogadottak a végtelen nagyságú matematikai objektumok. Ezt az alternatív matematikai kultúrát egyébként finitizmusnak hívják. Jó kérdés viszont, hogy lehetnek-e olyan matematikai paradoxonok, amelyeket a finitizmussal (és csak a finitizmussal) fel lehetne oldani (pl. találhatunk-e hibát a hyperreal vagy az ahhoz hasonló konstrukciókban). Vajon ilyen lehet például Hilbert Grand Hotel-paradoxonja? Eszerint egy végtelen sok szobát tartalmazó hotelben minden szoba foglalt. Mégis lehetne új vendégeket elszállásolni, ha minden vendéget a dupla akkora számú szobába költöztetnek. Azonban ezt meg lehet magyarázni azzal is, hogy az aleph-null számosságnak (ami a "végtelen sok" szoba számát jelentheti) ilyenek a tulajdonságai, hogy átköltöztetés esetén bijektív leképezés képzelhető el a halmaz és annak egy részhalmaza között. Ehhez tehát nem kell bevezetni a finitizmust.

(Blogbejegyzés szerkesztve 2021-08-08: Azonban jó kérdés, hogy mi lehet két "hyperreal" szám különbsége... pl. mennyi lehet "omega"-"omega"? Hogyan oldjuk meg a "hyperreal" számokat is tartalmazó egyenleteket? Ezen talán mégis elbukhatnak a végtelen nagyságú képletek is. Pl. vegyük a következő képletet:

((1+1)+(1+1/2)+(1+1/4)+(1+1/8)+(1+1/16)+...) - (1+1+1+1+1+...)

Egy módon kiértékelve ezt, azt kapjuk, hogy:

1+1/2+1/4+1/8+1/16+...=2

Más módon kiértékelve pedig azt kapjuk, hogy "omega"-"omega". Akkor vajon itt "omega"-"omega"=2? Nehezen hihető, különösen ha elhagyjuk a sorozatok első néhány tagját, vagy ha az (1+1+1+...) helyett ((1+1)+(1+1)+(1+1)+...)-t írunk. Az utóbbi esetben, "omega"-"omega"="-omega", tehát 2="-omega", ami ellentmondás. Ezen a kérdésen, és a matematikai finitizmuson tehát még lehet gondolkodni.

Eszembe jutott az is, hogy a végtelen nagyságú képletek kiértékelése talán divergenciához vezet, pl. a következő képlet esetén:

(-1)^1+(-1)^2+(-1)^3+(-1)^4+(-1)^5+...=(-1)+1-1+1-1+...

Ennek az eredménye tehát lehetne akár 0, akár (-1). Mivel a végtelen nagyságú képletek bevezetése ilyen divergenciát is szülhet, azokkal nem lehetne úgy számolni, mint a normális képletekkel. Ennél tehát egyszerűbb a matematikai finitizmus. Tehát, lehetőleg használjuk mindig a "lim" jelölést, amikor végtelen nagyságú képletekről lenne szó!)



2021. augusztus 4., szerda

Vegyes gondolatok, német YouTube videók és a kérdés, vajon a demokratikus szocializmus környezetbarátabb lenne-e, mint a kapitalizmus?

Ha valamire kisebb a kereslet, akkor a kapitalizmusban annak ára valószínűleg csökken (erről Adam Smith írt a "Wealth of Nations" című művében, aminek hangoskönyv változatát a LibriVox prodzsektből érhettem el). Viszont egy más fajta rendszerben, pl. a demokratikus szocializmusban nem (csak) a kereslet és a kínálat viszonya, hanem a termelési költségek és a demokratikus szavazatok (is) határoznák meg az árakat, tehát az áru ára akár még növekedhetne is, ha csökken az iránta való kereslet. Jó kérdés, hogy ez a más fajta rendszer életképesebb lenne-e, és jobb lenne-e, illetve környezetbarátabb lenne-e, mint a kapitalizmus és a fogyasztói társadalom... Persze ezt a gyakorlatban inkább úgy kellene elképzelni, hogy a kapitalizmus működik tovább, csak a ritkább árucikkekre (pl. a luxuscikkekre) szükségszerűen plusz adókat szavazna meg a demokratikus többség, ez pedig beépülne az áraikba... mint ahogyan Magyarországon a szinte minden állampolgár által fizetett rezsi csökkentését szavazta meg a többség. Persze a termelési költségek alá nem érdemes csökkenteni azon áruk árát sem, amelyekre nagy a kereslet... Itt tehát továbbra is érvényben maradhat az, hogy a kereslet növekedésével az áru ára valószínűleg növekedik... Ez egyébként a közgazdaságtanban ismert "law of diminishing returns" miatt van így (erről egyébként Alfred Marshall "Principles of Economics" című művének hangoskönyv változatában hallottam). Hát egyenlőre ennyit erről, ez csak egy olyan kérdés volt tőlem, ami kedvcsináló lehet ahhoz, hogy valaki többet tanuljon például a közgazdaságról.

Ami a közgazdaságot illeti, elkezdtem hallgatni egy német nyelvű YouTube lejátszási listát benne a makroökonómiáról szóló egyetemi előadásokkal, ez a "Makroökonomie I - B.Sc." a "Wirtschaftstheorie Makro" nevű YouTube felhasználótól... de sajnos a lejátszási lista közepe fele már nem tudtam elég jól megérteni, hogy miről beszéltek, mert olyan képleteket használtak, amelyekben nem tudtam, melyik betű mit jelöl. Úgy gondolom, ez nem az én hibám, hanem inkább az előadás minősége volt a rossz. De szerencsére találtam olyan YouTube lejátszási listákat is, amelyekből jó volt tanulni, ezek a következők:

  • "Grundkurs Politische Systeme - 14 Vorlesungen von Prof. Dr. Werner J. Patzelt" a "MOOC PolSys" nevű YouTube felhasználótól
  • "Staatlichkeit und Demokratien im Vergleich - 12 Vorlesungen von Prof. Dr. Werner J. Patzelt" a "MOOC PolSys" nevű YouTube felhasználótól
  • "Philosophie: Politische Philosophie" a "Dietmar Hübner" nevű YouTube felhasználótól
  • "Philosophie: Praktische Philosophie" a "Dietmar Hübner" nevű YouTube felhasználótól
  • "Grundlagen des Marketing" a "Marc Oliver Opresnik" nevű YouTube felhasználótól
  • "Vorlesung Grundlagen der BWL" a "Marc Oliver Opresnik" nevű YouTube felhasználótól (ez utóbbi hallgatása folyamatban van, a többit már mind megnéztem/meghallgattam)

Persze vannak még mások is, amelyek témája jelenleg kevésbé érdekel (pl. a történelemről, vagy a filozófia kevésbé érdekes ágairól). De a felsoroltak mind érdekes, jó minőségű előadások, amelyek növelhetik a bölcsességünket. Arra is gondoltam, hogy lehet, hogy magyar nyelvű YouTube videót csinálnék arról, hogy mit tanultam a felsorolt előadásokból... nem tudom, megérné-e a fáradtságot. Sajnos ezt a blogomat is viszonylag kevesen látogatják, úgyhogy nem is annyira úgy csinálom ezt a blogot, mintha megérné, hanem inkább úgy, mint egy játékot (miként a sakkot is, ahol szintén nincs sok esélyem), aminek az a célja, hogy növeljem a látogatottságát (talán a szociális média és az Instagram-felhasználók is hasonló játékot játszanak). Általában minden nap, amikor belépek a G-Mail fiókomba, megnézem azt is, hogy aznap és az azelőtti nap megnézte-e valaki a blogomat. Talán a szociális médiával könnyebb lenne, de nem szeretném elfogadni a FaceBook (üzleti) és az Instagram felhasználási feltételeit: minden jogot fenntartanak, amelyet kifejezetten nem engedtek át nekünk. Mondjuk szerintem ez nem annyira jogi, mint elvi és spirituális kérdés.

Másrészt felmerülhetnek olyan érvek is, amik a blogolás és a YouTube videó készítés ellen szólnak. Például az, hogy a múltban többször is blogoltam (sőt, YouTube videókat is készítettem), ezeket azonban később leszedtem az Internetről különféle spirituális okok miatt (pl. úgy láttam, hogy a bőrbetegségeim ezekkel lehettek összefüggésben). Nemrég eszembe jutott egy másik érv is a túlzott számítógép-használat ellen: ez pedig az, hogy a számítógépezéshez használt elektromos energia kb. 50%-ban a paksi atomerőműből származik (legalábbis nálunk Magyarországon), és nem tudhatjuk, hogy az atomerőmű mellékterméke, a radioaktív hulladék mennyire káros, és mennyiben jelenthet vétket az Isten ellen. Tehát, készítettem egy háttérképet az Ubuntu Linuxhoz (login screen ÉS desktop background), ami emlékeztethet engem arra, hogy a laptopot csak fontos dolgokra használjam. (Blogbejegyzés szerkesztve 2021-08-05: a képet leszedtem, mert nem vagyok biztos benne, hogy az ionizáló sugárzás jelének megosztása megengedett-e a Blogspot-on.)

Azért csak megengedtem magamnak ezt a blogbejegyzést, mert ma ehhez volt a leginkább kedvem. Az az igazság, hogy a legtöbb kedvem és energiám az idegen nyelven való tanuláshoz van (pl. a fent ajánlott videók nézéséhez, vagy a parapszichológiáról szóló podcastokhoz és videókhoz). A sakkozás (mint sport) így 39 évesen már kissé nehezemre esik, a sikerhez vezető prodzsektjeim végrehajtásához (pl. a programozáshoz vagy a könyvíráshoz) pedig általában még kevesebb kedvem van... de mégis csinálni tervezem ezeket, mert nem élhetek úgy, mint a buddhista szerzetesek, inkább gazdag és sikeres akarok lenni!

2021. július 23., péntek

Etika a matematikában: van-e benne hiba?

Újra átgondoltam egy matematikai logikai problémát, de sajnos eredménytelenül. Mi is ez a matematikai logikai probléma? Az, hogy a materiális implikációval kapcsolatban sokszor paradoxnak tűnő dolgokat tapasztalok. Például, először akkor találtam ilyen paradoxnak tűnő dolgot, amikor az egyetemen a matematikai logikáról tanultunk. Volt egy feladat, amiben két állítást kellett egyszerre igaznak elfogadni, és ezzel kapcsolatban volt egy kérdés... de én nem tudtam elfogadni a két állítást egyszerre igaznak! A két állításhoz hasonló felépítésűek a következők (mivel a konkrét állításokat talán nem közölhetném szó szerint):

1. Mária csak akkor dolgozik, ha Márta és Mariann is dolgozik.

2. Ha Márta nem dolgozik, akkor Mária dolgozik.

Az emberi logikám szerint ez a két állítás nem lehet egyszerre igaz. A matematikai logika (materiális) implikáció relációja szerint viszont mindkét mondat igaz lehet, ha Márta dolgozik (és Mária nem), hiszen "hamis állításból bármi következik". Ezek után többször is gondolkodtam a materiális implikáción. Így egy másik paradoxnak tűnő dolgot is találtam, ezt pedig a következő példával világíthatom meg:

1. Ádám látja, hogy nincs elektromos áram. Így azt a következtetést vonja le, hogy a következő állítás hamis: "Ha fel van kapcsolva a kapcsoló, világít a villany."

2. András látja, hogy a kapcsoló le van kapcsolva. Így azt a következtetést vonja le, hogy a következő állítás igaz: "Ha fel van kapcsolva a kapcsoló, világít a villany."

Melyiküknek lehet igaza? Amikor egy angol nyelvű matematikával foglalkozó blogom volt, már írtam erről egy blogbejegyzést, és abban levezettem, hogy a materiális implikáció igazságtáblázata miért nem lehet más (pl. 5 vagy 6 soros), mint amiről tanultunk (William Kneale és Martha Kneale a "The Development of Logic" című művükben megemlítik, hogy Diodórosz Kronosz és tanítványa, Philón, valamint követőik sokat vitatkoztak a materiális implikáció természetéről... szerintük Philón lehetett közelebb az igazsághoz, de mégis feltették azt, hogy egy tökéletesebb implikáció igazságtáblázatában az első állítás hamissága esetén az implikáció igazságértéke talán nem csak igaz lehet... tehát ezt a feltevést cáfolhattam meg). De ugyanezt gyorsabban is le lehet vezetni, ha megmutatjuk, hogy a "Ha A, akkor B" állítás ekvivalens azzal, hogy "(Nem A) vagy B". Ha viszont így van, akkor még mindig nem értem, mi okozza azt, hogy az emberi logikám néha mást mond, mint a matematikai logika és a materiális implikáció... pl. az utóbbi példában azt is mondhatnánk, hogy "Ha fel lenne kapcsolva a kapcsoló, világítana a villany." Ez Ádám szerint hamis, a matematikai logika szerint mégis Andrásnak van igaza, aki azt mondja, hogy igaz! Ezeken a dolgokon lehet, hogy gondolkodok még.

Ha már ezt a blogbejegyzést írom, meg szeretném említeni, hogy a matematikai publikációkat általában etikailag semlegesnek vagy inkább negatívnak tartom (hiszen hatalmat adhat azoknak, akik talán nem érdemlik meg azt, illetve a megoldatlan problémákon dolgozókat felszabadíthatja arra, hogy valami károsabbon dolgozzanak). A tudósoknak inkább a környezetvédelemmel vagy a szocializmussal kellene foglalkozniuk helyette. De egy dolgot mégis etikusnak találnék a matematikai publikációk terén: azt, ha valaki be tudná bizonyítani, hogy a matematika épületében valahol tévedés van! Vajon lehetséges ez? Jó kérdés. Mindenesetre én korábban több lehetséges területet találtam arra, ahol vizsgálódni lehetne:

  • Amellett érvelek, hogy a végtelen az nem szám. Ha a végtelen szám lenne, akkor lenne egy tőle különböző szám, ami nála nagyobb, de nincs nagyobb szám a végtelennél. Tehát, nem használhatjuk a ∞ (végtelen) jelet számok helyett! Mi a helyzet a végtelen sorral? Ha a végtelen sor minden tagja véges, az összegük még mindig lehet végtelen. Mivel a számok összege szám kell legyen, de valamilyen végtelen sor összege nem szám, arra juthatunk, hogy a végtelen sor összege nem számok összege! Ez ugyanis egy végtelen sok tagú képlethez vezetne, de mint már láttuk, a végtelen nem szám. Tehát a végtelen sok tagú képlet nem képlet. A végtelen sor összegét tehát mindig csak a határérték-számítás értelmében használhatjuk. Előfordulhat, hogy a matematika épületének építésekor (pl. végtelen gráfok esetén) erről valakik megfeledkeztek... és ilyenkor sajnos olyan durva dolgok is előfordulhattak, mint az 1+2+3+4+...=-1/12 képlet. Véleményem szerint valószínűleg a "Hyperreal number" sem egy jó fogalom.
  • Ezek miatt például az is hosszabb bizonyításra szorulhat, hogy valójában létezik-e a Koch görbe? Úgy gondolom, hogy létezik, de ez nem triviális.
  • Hasonló okokból kételkedtem például Ramanujan által megoldott végtelen nagyságú gyökös képletekben is. Persze most már úgy gondolom, ezekben sem volt hiba, csak a jelöléssel vannak elvi problémáim. Másrészt elképzelhetőnek tartom, hogy más végtelen nagyságú gyökös képletekben nem egyértelmű, hogy hogyan képezzük azokat a véges képleteket, amelyek a végtelen nagyságú képletekhez konvergálnak, tehát akár kétféleképpen is képezhetők ezek, így talán divergens sorozatot kapunk, erre tehát vigyázni kell.
  • Hasonlóképpen, bármilyen fogalmat, ami a végtelent tartalmazza (pl. végtelen gráfokat, végtelen halmazokat, végtelen képleteket) meg lehetne vizsgálni az előbb leírt elveim szerint, tehát aszerint, hogy a végtelen csak határértékként létezhet. Bár vannak végtelen halmazok, de mi van akkor, ha csak azok léteznek közülük igazán, amelyek véges információval leírhatóak vagy definiálhatóak? Így "a végtelen csak határértékként létezhet" állítás igaz marad, és a végtelen halmazok tulajdonképpen nem végtelen halmazok, csak véges képletek annak eldöntésére, hogy valami valamilyen tulajdonsággal rendelkezik-e. Ez talán egy újabb módja annak, hogy feloldjuk a Russel-paradoxont azoknak a halmazoknak a halmazáról, amelyek nem tagjuk önmaguknak. De a Russel-paradoxonban leírt halmaz azért is sántít, mert önmagára való hivatkozás (self-reference) van benne.
  • Gödel első nemteljességi tétele és Löb tétele is kapcsolatosak egy állítás önmagára való hivatkozásával. Tehát, ezeket is érdemes lehet jobban megvizsgálni, mert úgy érzem, hogy az önmagukra hivatkozó állítások hibát jelentenek a matematikában. Gödel első nemteljességi tételének vizsgálatához használható ingyenes források a "Stanford Encyclopedia of Philosophy" (2 cikk), valamint a WikiPedia cikkben belinkelt "Martin Hirzel's (2000) simplifying translation of Gödel's original article, On formally undecidable propositions of Principia Mathematica and related systems I". Amikor ezeket megvizsgáltam, arra jutottam, hogy a "Diagonal lemma"-val (más néven "Fixed Point Theorem") nem bizonyítják azt, hogy létezniük kell önmagukra vonatkozó állításoknak, csak annyit, hogy létezik olyan szám, ami olyan állítást jelent, amiben megtalálható ugyanaz a szám... de bármiféle szemantikus jelentés nélkül. Ha a "Képletként(X) ekvivalens ValamelyKéplet(Paraméterként(X))-el", az nem jelenti azt, hogy "Képletként(X)" szemantikus értelemben önmagára hivatkozó lenne, hiszen nem hivatkozik "Képletként(X)"-re, csak "Paraméterként(X)"-re, és ezek különböző dolgokat jelentenek szemantikus értelemben. Egyébként ha már Gödel első nemteljességi tételénél tartunk, azt is meg lehetne vizsgálni, hogy az annak bizonyításában leírt végtelen halmazok számossága alef-null vagy kontinuum, és ez okoz-e a bizonyításban valamilyen hibát (én úgy láttam, hogy nem, de ez nem triviális).
  • Tehát, összefoglalva, elsősorban a végtelenek és/vagy az önmagára való hivatkozások esetén látom érdemesnek hibákat keresni a matematika épületében... De természetesen még ott is van hibalehetőség, ahol egy tételt csak a számítógép segítségével tudtak bebizonyítani (ezt tehát érdemes lehet megpróbálni "kézzel" is bizonyítani), illetve a számítógépes matematikai szoftverekben még sok hibalehetőség van (bár ez már nem tartozik szigorúan a matematika épületéhez).

Talán később még megvizsgálom az itt említett hibalehetőségeket a matematikában, ha lesz rá időm.

(Hozzáfűzés a blogbejegyzéshez 2021-07-27: Voltak más matematikusok is, akik hasonló véleményen voltak, mint én, a végtelen okozta hibákkal kapcsolatban: az ő filozófiai irányzatuk a finitizmus. 2021-08-06. Stop.)

2021. július 22., csütörtök

Top 10 ötletem programozási prodzsektre

Elég sokat gondolkodtam azon, hogy mit lenne érdemes programoznom, ami referenciaként (pl. GitHub prodzsektre mutató link formájában) megosztható lenne a CV-mben, de akár az álláskereséstől függetlenül is sikeresebbé tehetne engem. A neten is utánanéztem ennek a kérdésnek, de saját ötleteim is voltak. Korábban írtam 3 blogbejegyzést is a témában, de ezeket időközben töröltem (mert nem volt kedvem programozni). Ezek alapján most röviden összefoglalom, mi éppen a 10 legjobb ötletem programozási prodzsektre (mivel úgy látom, mégis jó lenne valamit programozni):

  • 10. Játék ötlet a gyermekkoromból: ha nincs jobb ötlet, számítógépes játékot még mindig lehet programozni. Gyermekkoromban például szerettem volna egy olyan számítógépes játékot, ami a "Super Mario" és a "Prince of Persia" keveréke lett volna: tehát, a főszereplő tudott volna ugrani úgy is, mint Mario (magasra), és úgy is, mint a Prince (távolra). Mondjuk ez az ötlet már nem izgat. Egyébként ha játékot fejlesztek, akkor újrahasznosíthatnám létező open-source játékok grafikai elemeit (hiszen ezekben sokszor a grafika elkészítése a legnehezebb). Ennek még utána lehet nézni, és annak alapján konkrétabb ötleteket megfogalmazni. Előnye a játékfejlesztésnek, hogy desktop, mobil vagy akár web alkalmazásként is megvalósíthatnám azt, és elég jól gyakorolhatnám vele a programozást. Hátránya, hogy a játékok piacán már így is nagyon nagy a kínálat, és a kisebb játékok iránt nem valami nagy a kereslet.
  • 9. Kvíz motor: ez az ötletem már elég régi, hiszen régen a freerice.com-hoz hasonló honlapra gondoltam. A kvízek persze okostelefonokon is jól működnének. Mitől lenne ez a kvíz jobb, mint mások? Szerintem a kvíz csak olyan kérdéseket tartalmazzon, amelyek a hasznos tudásra vonatkoznak (tehát, nem attól lesz valaki okos ember, hogy tudja, hogy mikor ki nyert az olimpián, vagy melyik filmben ki szerepelt). Másrészt a kvíz kérdéseinek nehézségét a kvíz motor automatikusan is mérhetné, és nem kellene előre megadni azt (mint ahogyan meg volt adva az régen a FreeRice.com-on). Előnye ennek az ötletnek, hogy a webfejlesztői vagy mobil alkalmazás fejlesztői képességeimet fejleszthetném vele. Hátránya, hogy valószínűleg szervert kellene üzemeltetni a működtetéséhez, valamint a kvíz kérdéseinek létrehozása sem lenne kis munka.
  • 8. Kártyajátékok: szívesen megvalósítottam volna a kedvenc, magyar kártyával játszható játékaimat (birge, svindli, trómfos bornyú) számítógépes játékként, de rá kellett jönnöm, hogy nincsenek fenn az Interneten a magyar kártyának olyan képei, amelyek közkincsek lennének (ez azt jelenti, hogy valószínűleg az sem közkincs, amit beszkennelhetnénk). Így max. azt tehetném meg, hogy a magyar kártyával játszható játékokat átültetem francia kártyára úgy, hogy a francia kártyának nem használom a lapjait a kettestől a hatosig. Előnye az lett volna ennek az ötletnek, hogy viszonylag környezetbarát játékokat népszerűsített volna. Hátránya, hogy francia kártyával nem az igazi.
  • 7. Sakk-variánsok: érdekesnek találnám a sakkot nagyobb táblán, pl. 10x10-es dáma táblán vagy 18x18-as gó táblán (ez utóbbit dupla annyi bábuval). Persze a hozzá szükséges mesterséges intelligenciát át kellene írni, hiszen a tábla méretének változásával a bábuk értéke is változna. Ez pedig nem nyilvánvaló, tehát valószínűleg önmagától tanuló AI-ra lenne szükségem. Az utóbbit viszont valahogyan le kellene butítani, hogy a humán játékosoknak is legyen ellene esélye. Nem könnyű feladat. Illetve, gondoltam arra is, hogy újfajta bábukat találjak ki a sakkhoz, és ezeknek az erejét összemérjem a sakk eredeti "csapatával". Nyilván ehhez is önmagától tanuló AI kellene. Előnye talán annyi lenne ennek az ötletnek, hogy a jövőbeli sakkozó ismerőseim körében talán jó eséllyel el tudnám terjeszteni a szoftvert. Hátránya, hogy a mesterséges intelligenciához valószínűleg külső szoftverre lenne szükségem, nincs kedvem a 0-ról megírni azt.
  • 6. Játék egy környezetvédő szervezet irányításáról: még korábban támadt ez az ötletem, amikor a környezetvédelemmel foglalkoztam. Ez akkor lenne érdekes játék, ha sok olyan ötletet bele tudnánk vinni, amiből tanulva a valóságban is hatékonyabbá tehető egy környezetvédő szervezet. Előnye ennek az ötletnek az etika. Hátránya, hogy a programozáson kívül is elég sok kreatív munkát igényelne egy ilyen játék létrehozása, és nem biztos, hogy elég sok jó ötletünk támadna hozzá.
  • 5. Fotókat "torzító" mobil App: rengeteg olyan mobil App-ot (alkalmazást) lehet találni a neten, amelyek a fotók szerkesztését teszik lehetővé (így pl. a selfie-ket nem kell rámásolni egy laptopra vagy PC-re, hogy átszerkesszük azokat a közösségi oldalakon való megosztás előtt), ezért elsőre nem is tűnik olyan jó ötletnek az, hogy készítsünk még egyet. De ha lenne valamilyen jó ötletünk olyan effektus(ok)ra, amit az említett programok nem tudnak, akkor akár csinálhatnánk csak ezért is egy mobil alkalmazást. Például, ha valaki szeretne a selfie-jéhez valamilyen stílusú keretet adni, vagy valamilyen formátumú szöveget adni (akár szövegbuborékban, vagy mém-szerűen), akkor azt a mi alkalmazásunkkal tehetné meg a legegyszerűbben (és az app megjegyezné, hogy a felhasználó milyen keretet szokott adni a képeihez, és milyen formátumban szokott szöveget írni hozzájuk). Esetleg a mi app-unk tudna fotókat "torzítani" úgy, ahogy más app nem (és ehhez semmilyen további inputra nem lenne szüksége magán a képen kívül). Általánosságban, a könnyen kezelhetőség érdekében minél kevesebb inputra kellene törekedni, és a lehetséges opciókat használati esetek (Use Case) alapján ajánlaná fel az alkalmazás. Persze még nem tudom, hogy mit tudnak a jelenlegi mobil alkalmazások, amelyek fotók szerkesztésére valók, de úgy gondolom, sok lehetőség elképzelhető valami olyan létrehozására, ami még nincs. Előnye ennek az ötletnek, hogy megtanulhatnám vele a manapság népszerű mobil app fejlesztést, amihez nem kell webszervert üzemeltetni (a webfejlesztéssel ellentétben). Hátránya, mint már említettem, hogy elég sok hasonló program van már a piacon, és valószínűleg nem tudnám értékesíteni a mobil alkalmazást, hacsak vállalkozó nem lennék.
  • 4. Social networking site motor: talán ez lenne a legjobb programozási ötletem, ha már gazdag lennék. Közösségi oldalt (mint a FaceBook), társkeresőt vagy levelezőtárs-keresőt is lehetne ezzel a motorral működtetni (a legjobb esetben ezt a hármat egyben). Ilyen motorról nem sokat hallani (de azért van néhány, rákerestem), különösen ami direkt ezzel a céllal készült (akik ilyen szoftvert készítenek, azok valószínűleg feltelepítik azt valahova, ahelyett, hogy motorként megosszák... egyébként talán én is ezt tenném, ha már gazdag lennék). De ahhoz, hogy elterjedjen, valamiben jobbnak kellene lennie ennek a közösségi oldalnak, mint másoknak... én úgy gondolom, hogy ez elérhető új ötletekkel (ezeket itt nem osztanám meg), valamint az ÁSZF (Általános Szerződési Feltételek) jogi feltételeinek elfogadhatóbbá tételével (pl. ha frissül az ÁSZF, addig nem engedne belépni az oldalra, amíg a felhasználó el nem fogadja az új feltételeket, így kizárva a jogi kétségeket, illetve a feltételek frissítéseinek látatlanban való elfogadását). Nálam pl. egy olyan kis dolog is fontos lehet, hogy nem írják oda, hogy "Minden jog fenntartva"... Ennek az ötletnek az előnye, hogy a webfejlesztés területén tudnék referenciát mutatni a programozói készségeimről. Hátránya, hogy nem sok hasznát tudnám venni a szoftvernek, amíg szegény vagyok (hacsak meg nem tudnám győzni egy már elég nagy látogatottsággal rendelkező website tulajdonosát, hogy cserélje le a szoftverét az enyémre)... idővel pedig talán elavulna a sosem használt motor, hiszen a webes technológiák állandóan fejlődnek.
  • 3. Tömörítő program: megpróbálhatnék írni egy jobb (gyorsabb, vagy hatékonyabban tömörítő) tömörítő programot. Megpróbálhatnék indulni egy ilyen programmal a Hutter Prize nevű pályázaton. Ezzel valóban Programtervező Matematikus lehetnék. Ennek az ötletnek az előnye, hogy sikeressége esetén pénzt és hírnevet is szerezhetnék vele. Hátránya az a szó, hogy "megpróbálhatnék"... tehát nem biztos, hogy sikerülne, és ha nem, akkor hiába dolgoznék vele (illetve, jelenleg a laptopom sem biztos, hogy elég erős lenne a feladathoz).
  • 2. Podcast előkészítő szkript: sokszor elég sok időt elvesz tőlem az, hogy hangoskönyveket vagy podcastokat töltsek le pl. RSS Feed-ről, és azokat a mobilom (nem okostelefon) memóriakártyájára másoljam... ennek megkönnyítésére írhatnék egy BASH vagy Python szkriptet. Ez több részfeladatból áll: (1) több fájl RSS Feed-ről való letöltése (ha podcast), (2) szükség esetén az RSS Feed-ről letöltött fájlok automatikus átnevezése (néha odabiggyeszt a végükre egy kérdőjellel kezdődő részt, mint pl. abc.mp3?id=1234), (3) szükség esetén a fájlok szétdarabolása 30 perces darabokba (kb. ennyi ideig tart a sétám), (4) a Linuxos ext4 és a Nokia mobilos (memóriakártyás) FAT32/vfat fájlrendszerek esetén előfordulhat, hogy összekeveri a fájlok sorrendjét (mivel az ext4 fájlrendszerben a "directory order"-t nem a fájlok létrehozási ideje, hanem valami "hash" dönti el, és ezt veszi át a vfat), ezt kijavítandó, rendezze újra betűrendbe a fájlokat a memóriakártyán (átnevezésekkel). Ennek az ötletnek az előnye, hogy talán időt spórolhat meg nekem... hátránya viszont, hogy valószínűleg nem sok más embernek van pont erre szüksége.
  • 1. Audio Visualizer: egy program, ami egy adott zenéhez annak ritmusára mozgó szép számítógépes grafikai látványt generál. Ezt használhatnák például zenei YouTube videók képanyagaként, vagy akár professzionális zenészek is használhatnák fellépésekkor a mögöttük lévő kivetítőn, esetleg valós időben is "illusztrálni" tudna egy hanganyagot. Előnye, hogy sok lehetőség van benne, tehát akkor is érdemes lehet megvalósítani, ha mások már csináltak hasonlót. Hátránya, hogy elég nagy feladat, nehéz hozzáfogni.

Ez tehát éppen tíz ötlet volt, nem is nagyon tudtam volna többet írni. Néhány egyéb ötlet található még a régebbi informatikai írásaim között, de ezek nem tűntek annyira valós lehetőségnek a számomra (pl. az UFOAI feltelepítése már nem olyan nehéz, mint régen volt, ezért nem szükséges annak Linux disztribúciót csinálni).

2021. július 21., szerda

Levelezőtársakat keresek (I'm looking for pen pals)

A következő angol nyelvű webhelyen szoktam levelezőtársakat keresni:

www.penpalworld.com

Arra gondoltam, hogy ezt a lehetőséget a blogom olvasóinak is felkínálom. Ezúton, ezen blogbejegyzés keretében meg szeretném hirdetni, hogy itt is keresek levelezőtársakat, akár angol, akár német, akár magyar nyelven. Nem igazán barátokat keresek, mert nem szeretnék ilyen nagy felelősséget bevállalni, és nem is bízok meg az emberekben az Interneten. Csak levelezőtársat, "pen pal"-t keresek, akivel emaileket válthatunk. Sajnos olyan embert még nem találtam, akivel annyi közös témánk lenne, hogy hosszú ideig folytathatnánk a levelezést, ezért általában csak újabb és újabb emberekkel váltok néhány emailt, amíg eléggé meg nem ismerjük egymást és a gondolatainkat. De levelezni talán már ezért is érdemes lehet. (Én egyébként a való életben is eléggé introvertált voltam, nem tudtam sokat beszélgetni az emberekkel, mondjuk ez gyakorlat során talán változhat.) Szóval, én Kiskunfélegyházán lakok, 1982-ben születtem, és íme egy rólam készült fotó:

Talán nincs is szükség rá, hogy többet írjak magamról, hiszen ez a blog sokat elárul rólam. Aki levelezni szeretne velem, az írjon először egy üzenetet ennek a blognak a kapcsolatfelvételi űrlapján, ami a jobb oldalon található (sajnos mobilról nézve talán nem jelenik meg ez a kapcsolatfelvételi űrlap, tehát szükséges lehet hozzá laptop vagy PC).

Természetesen vannak témák, amikről szívesebben levelezek, mint másokról. Erre világíthat rá a PenPalWorld-ös profilom korábbi szövege:

I'm interested in parapsychology and supernatural powers. I also like to learn about different branches of Science and all kinds of wisdom. I usually listen to non-fiction audio (e.g. audiobooks, podcasts, lectures) in English to learn about these. I'm searching for English-speaking pen pals who have similar interests... but as "friend" is a word meaning too much (and also for weak IT security), I'm just looking for acquaintances here.

Otherwise, I'm also interested in learning the German language for better job security... it would be great to have a language exam in a year... so if you are a native German speaker, then I'm interested in corresponding with you about anything in German (the combined power of Google Translate and myself may be OK):

Hallo, ich bin ein Computerprogrammierer und aufstrebender Schriftsteller (Umweltschutz, Religionskritik), aber ich mache gerade körperliche Arbeit... Ich spiele auch Schach.

Egyébként az itt leírtakban annyi változott, hogy mostanában nem szoktam angolul podcast-okat és/vagy előadásokat hallgatni (csak hangoskönyveket séta közben), hiszen ezek helyett is a németre koncentrálok. Persze ha meglesz a német középfokú nyelvvizsgám, akkor majd újra visszatérhetek az angolra. Egyébként az sem biztos, hogy író leszek... legalábbis a közeljövőben nem tervezek új könyvet írni, csak később.